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Abstract

Τhe accuracy of template-based neuroimaging investigations depends on the tem-

plate's image quality and representativeness of the individuals under study. Yet a

thorough, quantitative investigation of how available standardized and study-specific

T1-weighted templates perform in studies on older adults has not been conducted.

The purpose of this work was to construct a high-quality standardized T1-weighted

template specifically designed for the older adult brain, and systematically compare

the new template to several other standardized and study-specific templates in terms

of image quality, performance in spatial normalization of older adult data and detec-

tion of small inter-group morphometric differences, and representativeness of the

older adult brain. The new template was constructed with state-of-the-art spatial

normalization of high-quality data from 222 older adults. It was shown that the new

template (a) exhibited high image sharpness, (b) provided higher inter-subject spatial

normalization accuracy and (c) allowed detection of smaller inter-group morphomet-

ric differences compared to other standardized templates, (d) had similar perfor-

mance to that of study-specific templates constructed with the same methodology,

and (e) was highly representative of the older adult brain.
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1 | INTRODUCTION

Structural T1-weighted templates play an important role in neuroim-

aging and are commonly used as references for spatial normalization

in voxel-wise analyses, such as in voxel-based morphometry

(Ashburner & Friston, 2000; Goldszal et al., 1998; Good et al., 2001;

Mechelli, Price, Friston, & Ashburner, 2005; Whitwell, 2009). When
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they are part of a comprehensive atlas, standardized structural

T1-weighted templates combined with various atlas resources, such as

tissue-probability maps and semantic labels, are also used in a plethora of

other applications including region of interest analyses (Josephs

et al., 2014; Pfefferbaum et al., 2013; Whitwell et al., 2012; Zhang

et al., 2010), automated tissue-segmentation (Grau, Mewes, Alcaniz,

Kikinis, & Warfield, 2004; Kwon, Shinohara, Akbari, & Davatzikos, 2014;

Van Leemput, Maes, Vandermeulen, & Suetens, 1999; Wang, Shi, Lin,

Gilmore, & Shen, 2011), automated seed selection for functional connec-

tivity (Braun et al., 2012; Chen et al., 2013; Faria et al., 2012; Liu

et al., 2015; Pineda-Pardo et al., 2014; Wee, Yap, Zhang, Wang, &

Shen, 2014; Zhu, Fan, Feng, Huang, & Wang, 2013), and even as stan-

dards in algorithm evaluation (Gholipour et al., 2014; Shi et al., 2013; Zhou

et al., 2015). Study-specific (SS) T1-weighted templates constructed from

the data collected in individual studies are also commonly used, however

they are typically not accompanied by other resources (e.g., other tem-

plates, labels, databases, software), which limits their functionality

(Ashburner & Friston, 2000; Good et al., 2001; Huang et al., 2010; Thomp-

son et al., 2001). The accuracy of the aforementioned applications of

T1-weighted templates depends on the spatial normalization accuracy

achieved with the selected template (Fonov, Evans, McKinstry, Almli, &

Collins, 2009; Yoon et al., 2009), which in turn depends on the template's

image quality and representativeness of the individuals under study

(Mazziotta et al., 2001; Zhang & Arfanakis, 2018).

It is well established that the characteristics of the older adult brain

differ from those of the brain of younger and middle-aged adults (Blatter

et al., 1995; Buckner et al., 2004; Courchesne et al., 2000; Dickie, Karama,

et al., 2016; Galluzzi, Beltramello, Filippi, & Frisoni, 2008; Good

et al., 2001; Sowell et al., 2003). Enlarged ventricles and sulci, varying

degrees of atrophy in gray and white matter, lesions such as white matter

hyperintensities, microbleeds, infarcts, and enlarged perivascular spaces,

are common in the older adult brain, suggesting that template-based stud-

ies on older adults require templates that are representative of such fea-

tures, to the degree possible (Dickie, Karama, et al., 2016; Dickie, Ritchie,

et al., 2016; Lemaître et al., 2005; Matsumae et al., 1996; Sullivan, Marsh,

Mathalon, Lim, & Pfefferbaum, 1995). Several standardized T1-weighted

templates of varying image quality are publicly available (Ashburner, 2007;

Avants & Tustison, 2018; Fonov et al., 2009; Klein, 2016; Mazziotta

et al., 2001; Shattuck et al., 2008; Tustison et al., 2014), few of which were

constructed using older adult brain data exclusively. However, template-

based investigations on older adults often utilize standardized templates

that have not been optimized for the older adult brain, such as those of

the ICBM (McGovern et al., 2017; Mega et al., 2005; Moayedi,

Salomons, & Atlas, 2018). Furthermore, even when older adult brain tem-

plates are used (standardized or SS), typically, little to no justification is

provided for the selection of template. This lack of attention in optimizing

the template selection step in most studies on older adults is due to the

fact that, notably, a thorough, quantitative assessment of how available

standardized and SS structural T1-weighted templates perform in studies

on older adults has not yet been conducted. This is a critical gap in the lit-

erature, as template selection may impact spatial normalization accuracy

and may have important implications in the accuracy of investigations on

older adults (Van Hecke et al., 2011; Zhang & Arfanakis, 2018).

The purpose of this work was twofold: (a) to construct a high-

quality, standardized T1-weighted template of the older adult brain

as part of an ongoing project to develop a comprehensive older adult

brain atlas named Multichannel Illinois Institute of Technology &

Rush university Aging (MIITRA) atlas, and (b) to systematically com-

pare the new template and several other standardized and SS tem-

plates in terms of image quality, performance in spatial normalization

of older adult data and detection of small inter-group morphometric

differences, and representativeness of the older adult brain. First,

high-quality T1-weighted data were collected on a large number of

well-characterized non-demented older adults (65–95 years of age).

Second, using a template construction technique aiming at generating

high quality templates, the effect of the number of persons included in

the construction of a template on template performance was assessed.

Next, the standardized MIITRA T1-weighted template was generated

using all the available data, and its performance was compared to that

of a large number of publicly available standardized and SS templates.

Finally, standardized T1-weighted templates were generated using data

from older adults with narrower age-range (e.g., 65–75 years,

70–80 years, etc.), and their performance was compared to that of the

wider age-range (65–95 years) MIITRA T1-weighted template.

2 | METHODS

2.1 | Data

Two brain magnetic resonance imaging (MRI) datasets were used in

this work. Dataset 1 was used for constructing the MIITRA standard-

ized T1-weighted template as well as narrower age-range templates.

Dataset 2 was used for evaluating the performance of the different

templates considered in this work, including a template constructed

from the data of Dataset 2, therefore referred to as a SS template.

2.1.1 | Dataset 1

Dataset 1 consisted of T1-weighted brain MRI data from 222 community

dwelling non-demented older adults (65–95 years of age, mean±SD

age = 80.1±8.3 years, male: female = 1:1, 174 with no cognitive impair-

ment, 48 with mild cognitive impairment) participating in the Rush Mem-

ory and Aging Project (MAP) (Bennett et al., 2018). All participants

provided written informed consent according to procedures approved by

the institutional review board of Rush University Medical Center. Dataset

1 was also divided into four subsets, each including 60 MAP participants

with a narrower age-range: Dataset 165–75 (65–75 years of age,

70.0±3.0 years, male: female = 1:1); Dataset 170–80 (70–80 years of age,

74.9±3.0 years, male: female = 1:1); Dataset 175–85 (75–85 years of age,

80.2±3.0 years, male: female = 1:1); Dataset 180–95 (80–95, mean±SD

age = 87.4±4.4, male: female = 1:1). All T1-weighted data in Dataset

1 were collected on a 3 Tesla (T) Siemens (171 persons) and a 3 T Philips

MRI scanner (51 persons) using a 3D magnetization prepared rapid acqui-

sition gradient echo (MPRAGE) sequence with the following parameters:
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for 3 T Siemens, TR = 2,300 ms, TE = 2.98 ms, TI = 900 ms, flip-

angle = 9�, field of view = 256 mm × 256 mm, 176 slices, acquired voxel

size = 1 × 1 × 1 mm3, and an acceleration factor of 2; for 3 T Philips,

TR = 8 ms, TE = 3.7 ms, TI = 955 ms, flip-angle = 8�, field of

view = 240 mm × 228 mm, 181 slices, acquired voxel

size = 1 × 1 × 1 mm3, and an acceleration factor of 2. The data of Dataset

1 can be accessed by submitting a request to www.radc.rush.edu.

2.1.2 | Dataset 2

Dataset 2 consisted of T1-weighted brain MRI data from 222 non-

demented older adults (65–95 years of age, mean±SD

age = 80.1±5.7 years, male: female = 1:1, 131 with no cognitive impair-

ment, 91 with mild cognitive impairment) participating in the Alzheimer's

Disease Neuroimaging Initiative 3 (ADNI3) (http://adni.loni.usc.edu).

ADNI was launched in 2003 as a public-private partnership, led by Princi-

pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial MRI, positron emission tomography, other

biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment

and early Alzheimer's disease. For up-to-date information, see http://

www.adni-info.org. Dataset 2 was also divided into four subsets, each

including 60 ADNI3 participants with a narrower age-range: Dataset

265–75 (65–75 years of age, mean±SD age = 70.9±2.6 years, male:

female = 1:1); Dataset 270–80 (70–80 years of age, 75.0±2.9 years, male:

female = 1:1); Dataset 275–85 (75–85 years of age, 80.0±2.9 years, male:

female = 1:1); Dataset 280–95 (80–95 years of age, 84.1±3.2 years, male:

female = 1:1). All T1-weighted data in Dataset 2 were collected on 3T

Siemens (163 persons) and Philips MRI scanners (59 persons) using 3D

MPRAGE sequences with the following parameters: for 3 T Siemens,

TR = 2,300 ms, TE = 2.98 ms, TI = 900 ms, flip-angle = 9�, field of

view = 256 mm × 240 mm, 208 slices, acquired voxel size = 1 × 1

× 1 mm3, and an acceleration factor of 2; for 3T Philips, TR = 6.5 ms,

TE = 2.9 ms, TI = 900 ms, flip-angle = 9�, field of view = 256 mm × 256

mm, 211 slices, acquired voxel size = 1 × 1 × 1 mm3, and an acceleration

factor of 2.

2.2 | Preprocessing

The raw T1-weighted images in Datasets 1 and 2 were skull-stripped

using the multi-atlas skull-stripping method (Doshi, Erus, Ou,

Gaonkar, & Davatzikos, 2013) with a set of 100 atlases (Heckemann

et al., 2015). Next, the brain images were segmented into three tissue

classes (gray matter: GM, white matter: WM, and cerebrospinal fluid:

CSF) using CAT (Farokhian, Beheshti, Sone, & Matsuda, 2017), and

were used as priors for N4 bias field inhomogeneity correction

(Tustison et al., 2010). The image intensities were converted to z-

scores using the mean and SD of the intensities in the combined GM

and WM masks. Finally, the gray matter in brain MRI data of Dataset

2 was segmented into the Desikan–Killiany regions using FreeSurfer

(Fischl, 2012; McCarthy et al., 2015).

2.3 | Template construction

The template construction approach used in this work was based on a

widely used iterative process (Fonov et al., 2011; Guimond, Meunier, &

Thirion, 2000; Joshi, Davis, Jomier, & Gerig, 2004) following a symmetric

group-wise normalization (SyGN) method (buildtemplateparallel.sh)

(Avants et al., 2010; Avants, Epstein, Grossman, & Gee, 2008). In Step

1 of the template construction approach, preprocessed raw T1-weighted

images from different participants were rigidly registered to the

1 mm × 1 mm × 1 mm ICBM2009c template (Fonov et al., 2009) and

were averaged to generate an initial template (Figure 1) (Appendix S1

provides the settings used for registration, as well as an evaluation of the

rigid registration step). Mutual Information was used as the cost function

for rigid registration. In Step 2, the rigidly co-registered data were affinely

registered to the initial template using ANTs SyN affine registration

(Avants et al., 2008, 2011; Avants, Tustison, & Song, 2009) and both

cross-correlation and mutual information were used separately as cost

functions (Appendix S1). Next, the rigid, affine, and shape-update defor-

mations (shape-update was conducted using the built-in algorithm of

buildtemplateparallel.sh) were concatenated for each participant sepa-

rately to map the preprocessed raw images to the corrected minimum

deformation space without multiple interpolations, and the resulting

images were averaged across participants to obtain a new initial template

(Figure 1). Using the new template as initial reference, Step 2 was

repeated in multiple iterations until the Pearson cross-correlation similar-

ity index across templates from subsequent iterations became higher

than 0.9995. In Step 3, the template generated in the final iteration of

Step 2 was used as the initial reference for undergoing ANTs SyN

nonlinear registration of the aforementioned rigidly co-registered data

and a new initial template was generated. Cross-correlation and mutual

information were used separately as the cost functions in this step

(Appendix S1). Using this new template as initial reference, Step 3 was

repeated in multiple iterations. The same convergence criteria as in Step

2 were applied, and the final population brain template was generated

(Figure 1). In order to add skull and other head structures to this brain-

only template, the strategy by Rohlfing et al. was employed (Rohlfing

et al., 2012). However, only brain tissue was considered throughout the

rest of this work. Application of this template construction approach on

Dataset 1 generated the MIITRA T1-weighted template with

1 mm × 1 mm × 1 mm voxel-size (Figure 2). The MIITRA T1-weighted

template is available for download at www.nitrc.org/projects/miitra.

2.4 | Effect of the number of persons considered
in construction of standardized templates on template
performance

To investigate the effect of the number of persons included in the

construction of a standardized template on the performance of the

resulting template, multiple templates were generated based on dif-

ferent numbers of persons using a bootstrap approach, and the accu-

racy of spatial normalization to these templates was assessed. More

specifically, five templates were constructed based on each of the
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following numbers of participants: 210, 180, 150, 120, 90, 60, 30, 18,

using the template construction approach of Section 2.3 and a boot-

strap approach in which participants were selected randomly without

replacement from the 222 participants of Dataset 1. The same age

distribution and sex ratio (male: female = 1:1) was maintained for all

templates. Each of these templates was used as reference for spatial

normalization (using ANTs registration [Avants et al., 2011]) of ADNI

data from Dataset 2. The spatial normalization accuracy was assessed

for each template by means of the pairwise normalized cross-

correlation (Ferreira, Oliveira, & Freitas, 2014; Wang, Bovik, Rahim

Sheikh, & Simoncelli, 2004) (PNCC) of spatially normalized data:

PNCCij =
1
N
×

PN

m=1
Smi−μið Þ× Smj−μj

� �

σi × σj
ð1Þ

where Smi and Smj are the intensities in voxel m of subjects i and j, μi,

σi and μj, σj are the mean and SD of the intensities of all the voxels of

subjects i and j, and N is the total number of voxels. The average and

SD of PNCC over all pairs of spatially normalized data

(222 × 221/2 = 24,531 pairs) were computed for registration to each

template. Finally, the average and SD of the average PNCC values

from the five bootstrap copies of each template were computed. To

further assess spatial normalization accuracy, the transformations

obtained from registration of ADNI data from Dataset 2 to the differ-

ent templates were applied to the corresponding gray matter labels,

and the pairwise overlap of regional gray matter labels (PORGM)

(Crum, Camara, & Hill, 2006) of spatially normalized ADNI data was

computed as follows:

PORGMij =

P

L
Li\Lj

P

L
Li [Lj

ð2Þ

where Li \ Lj and Li [ Lj are the intersection and union of label L for

subjects i and j. The average and SD of PORGM over all pairs of

F IGURE 2 Examples of axial, sagittal, and coronal slices of the
Multichannel Illinois Institute of Technology & Rush university Aging
(MIITRA) T1-weighted template

F IGURE 1 Schematic representation of the approach used to generate the Multichannel Illinois Institute of Technology & Rush university
Aging (MIITRA) T1-weighted brain template
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spatially normalized data (222 × 221/2 = 24,531 pairs) were com-

puted for registration to each template. Finally, the average and SD of

the average PORGM values from the five bootstrap copies of each

template were computed.

2.5 | Comparison of multiple standardized and SS
brain templates

A number of standardized and SS brain templates were evaluated in

terms of image quality, inter-subject spatial normalization accuracy for

older adult data (using Dataset 2), detection of small inter-group mor-

phometric differences (using Dataset 2), and representativeness of

the older adult brain (using Dataset 2). The templates considered

included: (a) the MIITRA T1-weighted template, (b) a SS template gen-

erated by applying the approach of Section 2.3 on Dataset

2, (c) several other publicly available standardized templates with

voxel-size equal to or larger than 1 mm × 1 mm × 1 mm listed in

Table 1 and displayed in Figure 3, and (d) narrow age-range templates

constructed by applying the approach of Section 2.3 on the subsets of

Dataset 1 (generating template T65–75 from Dataset 165–75, template

T70–80 from Dataset 170–80, T75–85 from Dataset 175–85, T80–95 from

Dataset 180–95) (Figure 4).

2.5.1 | Comparison of template image sharpness

The evaluation of image quality of T1-weighted templates was limited

to an evaluation of image sharpness for two reasons. First, precise

definition of the different brain structures is important for accurate

spatial normalization. Second, all templates considered in this work

were satisfactory in terms of other image quality metrics (e.g., signal

to noise ratio, image artifacts). Image sharpness was assessed (a) by

visual inspection, and also (b) by means of the normalized power spec-

tra along the anterior–posterior (AP), left–right (LR), and inferior–

superior axes (IS) separately (Zhang & Arfanakis, 2018; Zhang, Peng,

TABLE 1 T1-weighted templates evaluated in this work

Name
Number of persons considered in template
construction Age range (years)

MIITRA 222 65–95

SS 222 65–95

MCALT (Schwarz et al., 2017) https://www.nitrc.org/projects/mcalt/ 202 30–92

SC_80–84 (Fillmore, Phillips-Meek, & Richards, 2015) https://jerlab.sc.

edu/projects/neurodevelopmental-mri-database/

62 80–84

ED_75–78 https://datashare.is.ed.ac.uk/handle/10283/1957 50 75–78

UNC-elderly https://www.nitrc.org/projects/unc_brain_atlas/ 27 >60

IXI-Dartel (Ashburner, 2007) 550 17–79

IXI-ANTS (Avants & Tustison, 2018) 560 20–90

UNC-adult https://www.nitrc.org/projects/unc_brain_atlas/ 50 20–50

SRI24 (Rohlfing, Zahr, Sullivan, & Pfefferbaum, 2010) https://www.

nitrc.org/projects/sri24/)

24 19–84

HLN (Klein) 12 23–39

ICBM2009c (Fonov et al., 2009, 2011) 152 18–44

ICBM2009a (Fonov et al., 2009, 2011) 152 18–44

ICBM452 (Mazziotta et al., 2001)

https://www.loni.usc.edu/research/atlases

452 Young adults

ICBM305 (Evans, 1994) https://www.loni.usc.edu/research/atlases 305 23±4.1

LPBA40 (Shattuck et al., 2008) https://www.loni.usc.edu/research/

atlases

40 16–40

Colin27 (Holmes et al., 1998) 1 (27 scans) 33

OASIS (Avants & Tustison, 2018) 30 18–90

NKI (Avants & Tustison, 2018) ~30 35–40

MMRR (Avants & Tustison, 2018) 21 20–61

T65–75 60 65–75

T70–80 60 70–80

T75–85 60 75–85

T80–95 60 80–95
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Dawe, & Arfanakis, 2011). In the first approach, a neuroradiologist

and two medical imaging graduate students, all three unfamiliar with

brain templates and blinded to the names of the different templates,

visually inspected and rated them on a three-level scale (1, 2, 3), with

1 and 3 representing the lowest and highest sharpness, respectively.

2.5.2 | Comparison of templates in terms of inter-
subject spatial normalization accuracy

The accuracy of inter-subject spatial normalization attained when

using each of the templates as reference was compared across tem-

plates for normalization of older adult ADNI data from Dataset 2. For

evaluation of the spatial normalization accuracy achieved with narrow

age-range templates (T65–75, T70–80, T75–85, T80–95) the narrow age-

range subsets of Dataset 2 (Dataset 265–75, Dataset 270–80, Dataset

275–85, Dataset 280–95) were used for spatial normalization. Registra-

tion to the different templates was accomplished using ANTs, which

is shown to be one of the top-performing registration tools for struc-

tural MR images (Klein et al., 2009). Inter-subject spatial normalization

accuracy was assessed by means of the average pairwise normalized

cross-correlation (PNCC) and the average pairwise overlap of regional

gray matter labels (PORGM) over all spatially normalized data, as

described in Section 2.4. In addition, a more localized assessment of

spatial normalization accuracy was conducted by means of the

pairwise Jaccard index (PJI) for each gray matter label of spatially nor-

malized data (Rohlfing, 2012):

PJIij =
Li\Lj
Li[Lj

ð3Þ

where Li \ Lj and Li [ Lj are the intersection and union of label L for

subjects i and j (homologous labels in contralateral hemispheres were

combined). The average and SD of PJI over all pairs of spatially nor-

malized data (222 × 221/2 = 24,531 pairs) were computed for each

gray matter label, as well as for the whole gray matter, white matter

and ventricles, and for registration to each template. Statistically sig-

nificant differences across templates were evaluated by means of

one-way ANOVA followed by the Tukey–Kramer post-hoc test. Dif-

ferences were considered significant at p < .05. Moreover, maps and

histograms of the SD of image intensities of spatially normalized data

were generated for normalization to each template. Histograms of the

F IGURE 3 Examples of axial slices
from the Multichannel Illinois Institute of
Technology & Rush university Aging
(MIITRA), study specific (SS), and multiple
publicly available standardized
T1-weighted templates evaluated in this
work for use in studies on older adults.
The number of persons (p) considered in
the construction of each template and

their age-range in years (y) is listed below
each template

RIDWAN ET AL. 1763



SD were compared across templates using the one-sided two-sample

Kolmogorov–Smirnov (KS) test and differences were considered sig-

nificant at p < .05.

2.5.3 | Impact of spatial normalization accuracy on
the ability to detect small inter-group differences in
voxel-based morphometry studies

Power analysis (Wicks, Vaughan, Massagli, & Heywood, 2011;

Zhang & Arfanakis, 2018) was used to assess the impact of spatial

normalization accuracy achieved with each of the templates on the

ability to detect small inter-group morphometric differences (Good

et al., 2002; Karas et al., 2003; Radua, Canales-Rodríguez, Pomarol-

Clotet, & Salvador, 2014; Salmond et al., 2002). More specifically, the

transformations from registration of Dataset 2 to the different tem-

plates were applied to the corresponding gray matter tissue probabil-

ity maps and the resulting maps were smoothed using a Gaussian

filter with sigma of 4 mm, in accordance with unmodulated voxel-

based morphometry procedures (Good et al., 2002; Radua

et al., 2014). Maps of the SD of the smoothed maps were then used in

power analyses to assess the minimum morphometric differences that

can be detected across two groups, assuming 100 participants per

group, significance at p < .05, and power >.95. This analysis was con-

ducted in Matlab (R2019b) (Mathworks, Natick, MA) using the

“sampsizepwr” function for two-sided t tests. Maps of the minimum

detectable inter-group morphometric differences were generated for

all templates. Cumulative distributions of the values presented in

these maps were compared between MIITRA and all other templates

using the one-sided two-sample KS test, and differences were consid-

ered significant at p < .05.

2.5.4 | Comparison of templates in terms of their
representativeness of the older adult brain

To evaluate how representative different templates are of the older

adult brain, maps of the log-Jacobian determinant of the deformations

obtained during spatial normalization of ADNI data from Dataset 2 to

the different templates were generated and averaged over all normal-

ized data for each template. Voxel-wise values in these maps

represent how data were deformed on average during spatial normali-

zation (Leow et al., 2007; Yanovsky, Leow, Lee, Osher, &

Thompson, 2009). Values equal to zero refer to no volume change,

greater than zero signify volume expansion, and lower than zero indi-

cate volume contraction. Histograms of the average of the log-

Jacobian determinant maps for voxel values greater than or equal to

zero, and less than or equal to zero, were computed separately and

compared across templates using the one-sided two-sample KS test,

and differences were considered significant at p < .05. In order to

assess the representativeness of different templates regionally, the

median of the absolute of the average log-Jacobian determinant was

calculated in each gray matter label, as well as in white matter and

ventricles, for spatial normalization to each template.

3 | RESULTS

3.1 | Effect of the number of persons considered
in construction of standardized templates on template
performance

Spatial normalization of ADNI data from Dataset 2 to templates con-

structed using data from different numbers of older adults showed

that the average PNCC and average PORGM increased gradually with

increasing number of individuals considered in the construction of the

template and plateaued after about 120 individuals. The SD of PNCC

and PORGM was high for small numbers of persons considered in the

construction of the template and decreased for higher numbers of

persons considered (Figure 5).

3.2 | Comparison of template image sharpness

Visual inspection of the templates under investigation showed that

MIITRA, SS, ICBM2009a, ICBM2009c, NKI, and COLIN27 templates

have higher image sharpness compared to other standardized tem-

plates (Table 2) (Figure 3). This finding was supported by a quantita-

tive comparison of the normalized power spectra from different

templates. The average energy at higher spatial frequencies over all

axes was generally higher for the aforementioned templates com-

pared to other standardized T1-weighted templates (Figure 6).

F IGURE 4 Examples of axial slices
from the narrow age-range templates
constructed in the same way as the
Multichannel Illinois Institute of
Technology & Rush university Aging
(MIITRA) template but using only
participants from a narrow age-range. The
corresponding number of participants and
age-range are shown below each

template
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3.3 | Comparison of templates in terms of inter-
subject spatial normalization accuracy

The accuracy of inter-subject spatial normalization of ADNI data from

Dataset 2 achieved when using each of the standardized and SS

T1-weighted templates as reference was compared across templates.

It was demonstrated that, compared to all publicly available standard-

ized templates, MIITRA resulted in higher average PNCC and average

PORGM (p < 10−6) (Figure 7a,b), as well as higher average PJI in the

majority of brain regions (p < .02) (Figure 7c and Appendix S2),

indicating higher spatial normalization accuracy. The same findings

were observed when considering data of Dataset 2 from each MRI

vendor separately (Appendix S3). The SS template constructed from

the same ADNI data of Dataset 2 resulted in similar but slightly higher

average PNCC and average PORGM than the MIITRA template, by

only 0.2 and 0.6%, respectively (p = 10−6) (Figure 7a,b), as well as simi-

lar but slightly higher average PJI in individual gray matter regions,

whole gray matter, white matter, and ventricles (Figure 7c and Appen-

dix S2). The performance of MIITRA and the SS template in terms of

average PJI relative to other templates was generally higher in cortical

F IGURE 5 (a) Average
pairwise normalized cross-
correlation (PNCC) and
(b) average pairwise overlap of
FreeSurfer-generated regional
gray matter labels (PORGM) of
spatially normalized Alzheimer's
Disease Neuroimaging Initiative
(ADNI) data for T1-weighted

templates constructed using data
from different numbers of older
adults. The error-bars denote the
SD of PNCC and PORGM

TABLE 2 Image sharpness ratings of
the different templates provided by a
neuroradiologist and two medical
imaging graduate students

Template Neuroradiologist Grad student 1 Grad student 2 Average

MCALT 2 2 2 2

SC_80–84 2 2 2 2

SRI24 3 3 2 2.7

ICBM2009c 3 3 3 3

SS 3 3 3 3

UNC-elderly 1 1 1 1

IXI-ANTs 2 2 1 1.7

ED_75–78 2 3 2 2.3

MMRR 2 2 2 2

ICBM2009a 3 3 3 3

Colin27 3 3 3 3

ICBM452 1 1 1 1

NKI 3 3 3 3

MIITRA 3 3 3 3

HLN 2 2 2 2

ICBM305 1 1 1 1

OASIS 2 3 3 2.7

IXI-Dartel 2 3 2 2.3

UNC-adult 1 1 1 1

LPBA40 1 1 1 1

Note: Three-level scale: 1 represents low sharpness, 2 moderate sharpness, and 3 high sharpness.
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than subcortical regions. Nevertheless, in subcortical regions, there

was less variation in average PJI across templates, and the perfor-

mance of MIITRA and SS templates was near the top (Figure 7c and

Appendix S2). Furthermore, the SD of image intensities of normalized

ADNI data was in general lower for MIITRA compared to all other

publicly available standardized templates as shown in maps and histo-

grams (p < 10−10) of SD (Figure 8). Only the SS template resulted in

slightly lower SDs than MIITRA (p < 10−10) (Figure 8).

The accuracy of inter-subject spatial normalization of ADNI data

with narrow age-range (Dataset 265–75, Dataset 270–80, Dataset 275–85,

Dataset 280–95) achieved when using the MIITRA template or the

narrower age-range templates (T65–75, T70–80, T75–85, T80–95) as reference

was evaluated. Overall, the MIITRA template resulted in similar or slightly

higher inter-subject spatial normalization accuracy than the narrower

age-range templates as shown by means of the average PNCC: MIITRA

> T65–75 by 1% (p = 10−10), MIITRA > T70–80 by 0.6% (p = 10−10), MIITRA

> T75–85 by 0.3% (p = 10−6), MIITRA < T80–95 by 0.1% (p = 0.046) (note

that the average PNCC was slightly higher for T80–95 than MIITRA)

(Figure 9a); and the average PORGM: MIITRA > T65–75 by 1.3%

(p = 10−10), MIITRA > T70–80 by 0.6% (p = 10−6), MIITRA > T75–85 by

0.7% (p = 10−4), MIITRA > T80–95 by 0.9% (p = 10−7) (Figure 9b). When

considering each gray matter label separately, as well as the whole gray

matter, white matter and ventricles, MIITRA resulted in higher average

PJI in the majority of brain regions compared to all narrower age-range

templates (Figure 9c and Appendix S4). Furthermore, MIITRA resulted in

a slightly higher number of voxels with lower SD of image intensities of

normalized data compared to T65–75 (p = 10−10), T70–80 (p = 10−10),

T75–85 (p = 10−10), and T80–95 (p = 10−10) (Figure 9d,e).

3.4 | Impact of spatial normalization accuracy on
the ability to detect small inter-group differences in
voxel-based morphometry studies

Power analysis showed that use of the MIITRA and SS templates

allowed detection of smaller inter-group morphometric differences in

gray matter compared to other templates. This was demonstrated in

Figure 10 as a higher number of gray matter voxels with cooler colors

and a lower number of voxels with warmer colors for MIITRA and SS

templates (multiple slices through the whole brain are shown in

Appendix S5). Also, the cumulative distribution of the minimum

detectable inter-group morphometric differences was significantly

higher for MIITRA and SS templates compared to other templates

(p < 10−11 in all cases, one-sided two-sample KS test) (Figure 10b).

F IGURE 6 Normalized power spectra for the (a) anterior–posterior, (b) left–right, and (c) superior–inferior axes, separately, for the
Multichannel Illinois Institute of Technology & Rush university Aging (MIITRA), study specific (SS), and multiple publicly available standardized
T1-weighted templates
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F IGURE 7 (a) Average pairwise normalized cross-correlation (PNCC), (b) average pairwise overlap of Free-Surfer generated regional gray
matter labels (PORGM), and (c) average pairwise Jaccard index (PJI) for individual gray matter labels, as well as for whole gray matter, white
matter and ventricles, over all spatially normalized Alzheimer's Disease Neuroimaging Initiative (ADNI) participants when using Multichannel
Illinois Institute of Technology & Rush university Aging (MIITRA), other standardized and study-specific (SS) templates as reference. The error-
bars denote the SD of PNCC and PORGM. Caudal anterior cingulate (CAC), caudal middle frontal (CMF), isthmus cingulate (IC), lateral
orbitofrontal (LOF), medial orbitofrontal (MOF), paracentral (PAC), pars opercularis (PAOC), pars orbitalis (PAO), pars triangularis (PAT), posterior
cingulate (POC), precentral (PRC), rostral anterior cingulate (RAC), rostral middle frontal (RMF), superior frontal (SF), frontal pole (FP), banks of the
superior temporal sulcus (BKS), entorhinal (ETR), fusiform (FF), inferior temporal (IT), middle temporal (MT), parahippocampal (PAH), superior
temporal (ST), temporal pole (TP), transverse temporal (TRT), insula (INS), inferior parietal (IFP), postcentral (POTC), precuneus (PREC), superior
parietal (SPP), supramarginal (SUPRM), cuneus (CN), lateral occipital (LAO), lingual (LIG), pericalcarine (PRC), cerebellum cortex (CC), thalamus (T),
caudate (CD), putamen (PT), pallidum (PAL), hippocampus (HIP), amygdala (AMY), accumbens area (ACA), ventral diencephalon (VDC)
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3.5 | Comparison of templates in terms of their
representativeness of the older adult brain

How representative different standardized and study specific tem-

plates are of the older adult brain was evaluated next. It was demon-

strated that, compared to all other publicly available standardized

templates, the MIITRA template resulted in a higher number of voxels

with an average log-Jacobian determinant near zero (Figure 11)

(p < 10−10 in terms of expansion and p < 10−10 in terms of contrac-

tion), suggesting that the MIITRA template is more representative of

the older adult brain. The SS template resulted in similar but slightly

less deformation on average in terms of expansion (p < 10−7) and con-

traction (p < 10−10) when compared to the MIITRA template

(Figure 11). Regional analysis showed consistently low levels of defor-

mation in all regions for MIITRA and SS templates (Appendix S6).

MIITRA and the narrow age-range templates (T65–75, T70–80,

T75–85, T80–95) were evaluated in terms of their representativeness of

older adult brains from age groups with a narrow age-range using sub-

sets of Dataset 2 (Dataset 265–75, Dataset 270–80, Dataset 275–85,

Dataset 280–95) (Figure 12). It was demonstrated that the MIITRA

template resulted in a similar but slightly higher number of voxels with

an average log-Jacobian determinant near zero compared to the nar-

row age-range templates (p < 10−7 for expansion, Figure 12b; and

p = 10−10 for contraction, Figure 12c). The only exception was that

the T70–80 template exhibited slightly less deformation on average

than the MIITRA template in terms of expansion (p = 10−7)

(Figure 12b). These results were in agreement with regional findings

(Appendix S7).

4 | DISCUSSION

The present work constructed a high-quality standardized T1-weighted

template of the older adult brain (MIITRA) (available for download at

www.nitrc.org/projects/miitra) and systematically compared the new

template and several other standardized and SS templates, in terms of

image quality, inter-subject spatial normalization accuracy for older adult

data, detection of small inter-group morphometric differences, and repre-

sentativeness of the older adult brain. The new template was con-

structed using (a) high-quality data from (b) 222 older adults, a number

that was shown to be almost twice the minimum number of persons nec-

essary for building a template that provides high spatial normalization

accuracy, (c) thorough data pre-processing, and (d) a state-of-the-art spa-

tial normalization strategy. It was shown that MIITRA was among the

templates exhibiting highest image sharpness, an important prerequisite

for providing high spatial normalization accuracy. Compared to all other

standardized templates, MIITRA allowed higher inter-subject spatial nor-

malization accuracy for older adult data, facilitated detection of smaller

inter-group morphometric differences, and was more representative of

the older adult brain. Furthermore, the MIITRA template had similar per-

formance to that of a SS template built with the same technique. Finally,

compared to templates developed based on subsets of the available data

with a narrower age-range, MIITRA provided similar spatial normalization

accuracy for older adult data with a narrow age-range, and was as repre-

sentative of such data. The present work has important implications for

template selection in studies on older adults, a critical step that is often

overlooked and directly impacts spatial normalization accuracy as well as

the overall accuracy of the studies themselves.

F IGURE 8 (a) Maps and (b) histograms of the SD of image intensities of spatially normalized Alzheimer's Disease Neuroimaging Initiative
(ADNI) data when using Multichannel Illinois Institute of Technology & Rush university Aging (MIITRA), other standardized and study-specific
(SS) templates as reference
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4.1 | Effect of the number of persons considered
in template construction on template performance

Spatial matching of older adult data improved on average and was less var-

iable across older adults when using standardized templates constructed

with data from a higher number of individuals. A plateau was reached after

~120 individuals. At least two factors may have contributed to these find-

ings. First, templates constructed with few individuals may contain

person-specific features rendering them less representative of older adult

brains in general (Joshi et al., 2004), thereby resulting in spatial normaliza-

tion accuracy that is lower on average and more variable across older

adults. Another factor that may have played a role in the above findings is

the fact that templates constructed based on higher numbers of individ-

uals are characterized by higher signal to noise ratio, improving spatial nor-

malization accuracy. After including at least 120 individuals in the

construction of a T1-weighted template of the older adult brain, person-

specific features have generally been eliminated, and template characteris-

tics such as signal to noise ratio are sufficiently high that any further

increase is not causing any substantial further improvement in spatial nor-

malization accuracy. Therefore, the fact that the MIITRA template was

constructed using high-quality data from 222 older adults indicates high

and stable performance of this new template in studies on older adults.

F IGURE 9 (a) Average pairwise normalized cross-correlation (PNCC), (b) average pairwise overlap of FreeSurfer-generated regional gray
matter labels (PORGM), (c) average pairwise Jaccard index (PJI) for individual gray matter labels, as well as for whole gray matter, white matter,
and ventricles, (d) maps and (e) histograms of the SD of image intensities of spatially normalized Alzheimer's Disease Neuroimaging Initiative
(ADNI) data from narrow age-range subsets of Dataset 2 (Dataset 265–75, Dataset 270–80, Dataset 275–85, Dataset 280–95), when using
Multichannel Illinois Institute of Technology & Rush university Aging (MIITRA) or the corresponding narrow age-range templates (T65–75, T70–80,
T75–85, T80–95) as reference. The error-bars denote the SD of PNCC and PORGM
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4.2 | Comparison of template image sharpness

The MIITRA and SS templates were shown to be among the templates

exhibiting the highest image sharpness. This is probably due to the

accurate spatial matching achieved with the approach of Section 2.3

and the high-quality data used in the construction of these templates.

The present work avoided edge enhancement, used in some of the

available templates (e.g., OASIS, HLN, MMRR), mainly to eliminate

any potential bias that would make the templates less representative

of the data from individual subjects. Although early neuroimaging

studies blurred the templates as well as the data from individual sub-

jects prior to spatial normalization to overcome limitations of image

registration algorithms, the most advanced nonlinear registration tools

available nowadays can benefit from a sharp template where edges

and transitions between structures are accurately represented. There-

fore, the high sharpness of the MIITRA template is another important

characteristic that provides the foundation for high spatial normaliza-

tion accuracy.

4.3 | Comparison of inter-subject spatial
normalization accuracy

4.3.1 | MIITRA versus other standardized and SS
templates

The MIITRA template provided higher inter-subject spatial normaliza-

tion accuracy for older adult data compared to other available stan-

dardized templates considered in this work, and similar normalization

accuracy to that achieved with the SS template. Achieving accurate

spatial normalization is crucial in voxel-wise analyses because spatial

matching of tissues across subjects directly impacts the sensitivity and

specificity of the analyses (Zhang & Arfanakis, 2018). This was dem-

onstrated in Section 3.4 where it was shown that the MIITRA and SS

templates allowed detection of smaller inter-group morphometric dif-

ferences compared to other templates.

The SS template provided only slightly higher spatial normaliza-

tion accuracy than MIITRA, probably due to the fact that it was con-

structed from the same ADNI data that were registered to

it. Nevertheless, this was only a marginal improvement, and when

deciding between the MIITRA or SS templates there are multiple

other factors that must be considered and which indicate that the

MIITRA template may be more preferable over SS templates. First,

the method used to develop both the MIITRA and SS templates

(Section 2.3) was designed to maximize template quality without limit-

ing the time necessary to achieve this goal. Although significant effort

was invested in the present study to design and implement a fast tem-

plate construction approach, template quality was the primary consid-

eration. Consequently, development of the MIITRA or SS templates

required ~96 hr on 222 processors with 256 GB memory. Investing

this amount of time in every template-based study to construct

corresponding SS templates may not be ideal. In contrast, use of the

standardized MIITRA template requires no time for development. If

speed is prioritized over template quality, the resulting SS template

will be of lower quality than that presented in this work. Similarly,

when a less optimized SS template construction method is used, or

the raw data quality of a study is lower, or the number of participants

is small, the resulting SS template will be of lower quality (potentially

F IGURE 10 (a) Maps and (b) cumulative distributions of the minimum detectable inter-group morphometric differences in gray matter when
using Multichannel Illinois Institute of Technology & Rush university Aging (MIITRA), other standardized and study-specific (SS) templates as
reference
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far lower quality) than that presented in this work. In brief, the stan-

dardized MIITRA template will generate consistently high spatial nor-

malization accuracy for all studies without spending any time to build

it, while SS templates will provide variable normalization accuracy that

may be significantly lower than that presented here, and must be con-

structed for every study separately. Furthermore, even though the

same older adult data that were registered to the different templates

were used in the construction of the SS but not the MIITRA template,

spatial normalization accuracy was almost the same for the two tem-

plates. This indicates that the MIITRA template may be rather

representative of older adult data from other cohorts, probably due to

the high number of persons included in its construction. Thus, a care-

fully built SS template may be only marginally more representative of

the data under study. In addition, adoption of a high-quality standard-

ized template such as MIITRA by the neuroimaging community will

facilitate integration and comparison of findings across studies.

Finally, use of the MIITRA T1-weighted template which is part of an

atlas that will eventually include multiple other resources in the same

space (other templates and semantic labels) may enhance functionality

in neuroimaging studies on older adults.

F IGURE 11 (a) Maps of the average of the log-Jacobian determinant of the deformation of spatially normalized Alzheimer's Disease
Neuroimaging Initiative (ADNI) data when using Multichannel Illinois Institute of Technology & Rush university Aging (MIITRA), other
standardized and study-specific (SS) templates as reference. (b) Histograms depicting the average deformation of spatially normalized ADNI data
in terms of expansion and (c) contraction for registration to the different templates. (d) Full-width-at-half-max (FWHM) of the histograms
obtained by combining (b, c)
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4.3.2 | MIITRA versus narrow age-range templates

Spatial normalization accuracy for data from older adults with a nar-

row age-range was generally similar, or slightly higher, when using the

MIITRA template compared to the corresponding narrow age-range

standardized templates. This finding was due to the fact that the

wider age-range MIITRA template was constructed using data from

more older adults (222) than the narrower age-range templates (60),

naturally, since the persons included in the latter were subsets of

those included in the former. This difference in the number of older

adults considered in template construction could be eliminated if lon-

gitudinal data from 65 to 95 years of age (30 years of data) were avail-

able for all participants, which would have also allowed construction

of a spatio-temporally consistent longitudinal template (Zhang

et al., 2016). However, collecting longitudinal data for such a long

period of time while also ensuring consistent image quality has not

been accomplished to date. Without such longitudinal data, the

difference in the number of older adults considered in construction of a

single wide age-range template versus multiple narrow age-range tem-

plates is inevitable, and has the implications for spatial normalization

accuracy discussed in Section 4.1. The high performance of the MIITRA

template even in groups of older adults with narrow age-range implies

that constructing narrow age-range T1-weighted templates may not be

necessary for spatial normalization purposes in studies on older adults.

4.4 | Comparison of templates in terms of their
representativeness of the older adult brain

4.4.1 | MIITRA versus other standardized and SS
templates

The MIITRA template required the least average deformation for spa-

tial normalization of older adult data compared to all other

F IGURE 12 (a) Maps of the average of the log-Jacobian determinant of the deformation of spatially normalized Alzheimer's Disease
Neuroimaging Initiative (ADNI) data with narrow age-range when using Multichannel Illinois Institute of Technology & Rush university Aging
(MIITRA) or the corresponding narrow age-range templates as reference. (b) Histograms depicting the average deformation of spatially normalized
ADNI data in terms of expansion and (c) contraction for registration to the different templates. (d) Full-width-at-half-max (FWHM) of the
histograms obtained by combining (b, c)
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standardized templates, indicating that MIITRA was most represen-

tative of such data in terms of shape and volume. Only the SS tem-

plate showed a slightly lower average deformation than MIITRA,

suggesting that the SS template was slightly more representative of

the data, which was anticipated since the SS template was built from

the same data used in the assessment of spatial normalization accu-

racy. These findings have important implications in template selec-

tion for use in studies on older adults, as they suggest that the

standardized MIITRA template is essentially as representative of the

data used in the construction of the SS template as the SS template

itself, while at the same time it provides numerous other advantages

over SS templates that were presented in detail in Section 4.3.1.

Finally, the whole brain and regional results showing that the

MIITRA and SS templates provided highest spatial normalization

accuracy but required the least average deformation indicate that

the high normalization accuracy was not due to very elastic, “unreal-
istic” deformations.

4.4.2 | MIITRA versus narrow age-range templates

The MIITRA template required similar or slightly lower deformation

for spatially normalizing data from older adults with a narrow age-

range compared to the corresponding narrow age-range standardized

templates. This suggests that the MIITRA template represents well

older adult brains from narrow age-ranges and further supports the

conclusion of Section 4.3.2 that constructing narrow age-range

T1-weighted templates may not be necessary for spatial normalization

purposes in studies on older adults (65–95 years of age).

Finally, in this section on template representativeness of the older

adult brain, it should be clarified that a population template that is

representative of the shape and size of various brain structures does

not include all possible features of the older adult brain. For example,

features that are not highly prevalent or lesions that do not have a

consistent location across subjects (e.g., microbleeds, infarcts) are

averaged out and are not visible in population templates.

4.5 | Caveats

One caveat needs to be considered when interpreting the results of

this work. Spatial normalization accuracy does not only depend on

the template, but also on the registration algorithm and the quality

of the individual data. To address this issue, a state of the art pub-

licly available registration algorithm (ANTs SyN) (Avants

et al., 2008, 2011; Klein et al., 2009) was used for spatial normaliza-

tion, and ADNI T1-weighted data of typical image quality were

used for evaluating the template performance (Erten-Lyons

et al., 2012; Petersen et al., 2010). Different registration algo-

rithms, as well as data from other studies of aging, and data col-

lected with MRI scanners of different vendors and with different

T1-weighted image acquisition protocols should be considered in

the future.

5 | CONCLUSION

The present work has important implications for template selection in

studies on older adults, a critical step that is often overlooked and

directly impacts spatial normalization accuracy as well as the overall

accuracy of the studies themselves. This work constructed a high-

quality standardized T1-weighted brain template specifically for use in

studies on older adults, named MIITRA, and systematically evaluated

the new template and several other standardized and SS templates.

The number of older adults included in the new template was shown

to be sufficient for ensuring consistently high spatial normalization

accuracy of older adult data. The MIITRA template was among those

templates that exhibited highest image sharpness. Compared to all

other publicly available standardized templates, MIITRA allowed

higher inter-subject spatial normalization accuracy for older adult

data, facilitated detection of smaller inter-group morphometric differ-

ences, and was more representative of the older adult brain. Com-

pared to narrow age-range standardized templates, MIITRA had

similar performance suggesting that narrow age-range T1-weighted

brain templates are not necessary for spatial normalization of older

adult data. Compared to SS templates, MIITRA also exhibited similar

performance. However, SS templates must be constructed in each

study separately, and if not constructed carefully they can have sub-

stantially lower performance than MIITRA. Overall, the MIITRA

T1-weighted template combines a number of desirable properties for

use in studies on older adults over other available standardized and SS

templates: (a) it is characterized by high image quality, (b) provides

consistently high inter-subject spatial normalization accuracy for older

adult data, (c) allows detection of small inter-group morphometric dif-

ferences, (d) is representative of the older adult brain, (e) allows inte-

gration of results across studies, and because it is standardized, (f)

eliminates time-consuming and potentially sub-optimal SS template

construction. The factors that contributed to the quality of the

MIITRA T1-weighted template were the: (a) use of high-quality data,

(b) inclusion of a sufficiently high number of older adults, (c) thorough

data pre-processing, and (d) use of a state-of-the-art spatial normaliza-

tion strategy. The MIITRA T1-weighted template is available for

download at www.nitrc.org/projects/miitra.
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